
Team l

Harvard Architecture, Tri-State Buses - Team l

Souder, Epifano, McGuire, Pranvoku, Drexel
Computer Architecture Spring 2017

July 21, 2017

1 Overview

B.E.S.T. (Binary Electronic System of Transistors) Processor is a 16 bit, Harvard ar-
chitecture processor. The register file consists of eight 16-bit registers that allow data
to be written to one destination register and read from two source registers at a time.
The arithmetic logic unit is capable of bitwise logical operations NOT, AND, OR, XOR,
NAND, and NOR. This component is also responsible for shifting register bits right
and left, as well as the arithmetic operations addition, subtraction and negative.
The processor utilizes a Harvard architecture, meaning it uses separate buses for
memory addresses and data, as well as separate memory blocks for program mem-
ory and random access memory. This architecture allows for an instruction execution
and instruction fetch each clock cycle, making most instructions only take one cycle
to complete.
As mentioned, there are two distinct memory blocks. Instruction sets are stored in a
512 word by a 16 bit read only memory (ROM) block. Additional memory which can
be used for storage is available in the form of a 512 word by 16 bit random access
memory (RAM) block. The first 17 addresses (000)16 to (010)16 are reserved for spe-
cial function access. Primarily used for multi-cycle instruction execution, a 256 word
by 16 bit hardware stack was implemented with full push and pop functionality.
Instructions are loaded from ROM by the instruction register. The instruction that is
loaded is based on the value of the program counter, and after being loaded the in-
structions are decoded in the control unit from their 16 bit value from ROM into a 46
bit control word.
The max clock frequency attainable by this processor is 110Mhz.

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Contents

1 Overview 1

2 Processor Architecture 3

3 Register File 4

4 ALU 6
4.1 Testing of ALU . 7
4.2 Function Select . 9

5 Memory Organization 11
5.1 Hardware Stack . 11
5.2 Special Function Register Addresses . 12

6 Datapath 13

7 Control Unit 15
7.1 Program Counter . 17
7.2 State Machine . 17

8 Instruction Set 18
8.1 Control Word . 18
8.2 Instruction Set Summary . 19
8.3 Instruction List . 20

9 CPU 26
9.1 Design and Features . 26

10 Peripherals 28
10.1 General Purpose Input and Output . 28
10.2 Personal System/2 Keyboard . 30

11 Example Program 31
11.1 McGuire . 31
11.2 Souder . 32
11.3 Epifano . 34

12 Errata 35

13 Appendix 35

Harvard Architecture, Tri-State Buses - Team l 2

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

2 Processor Architecture

The specific architecture utilized in this processor is commonly referred to as “Harvard
Architecture”. The main feature of this type of architecture “includes an internal RAM
where a portion of that internal RAM (herein called “common space”) can be used as
either data space or instruction space. Additionally, the common space can be used
as both data space and instruction space by partitioning into two parts.” [1] This re-
sults in more effective usage of the internal RAM. “However, because both instructions
and data are fetched simultaneously under Harvard Architecture, the common space
could receive conflicting data and instruction fetches. . . ” [1]

The other main component of this architecture is the use of tri-state buffers instead of
muxes for selection. This reduces the amount of gate delay that it takes each selec-
tion signal to propagate. For muxes where we would have more than one bit, like our
data bus mux, we had to select between 5 different things. We used 5 bits with 1-hot
encoding to achieve the same effect as a mux would.
The clock used in for this processor comes from the 50 MHz crystal on the DE0 board.

Figure 1: Abstracted View of our architecture

Harvard Architecture, Tri-State Buses - Team l 3

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

3 Register File

Figure 2: Schematic of Register File

The register file consists of eight 16 bit registers. A 3 to 8 decoder is used select the
register to which incoming data will be written. The outputs of the decoder are ANDed
with an enable signal (WR) which allows data to be written to the register file only
when WR is high. Each register also has an asynchronous reset switch that sets the
register to 16’b0 when the reset signal is high. The reset signal is tied to every register
in the register file, so it will clear every register in the register file simultaneously. The
output of each register is routed to two 8 to 1 multiplexers that allow two registers to
be read simultaneously. The registers to be read are selected by 3 bit inputs SA and
SB.
The inputs of the register file are clear, clock, write enable, 16 bit data in, 3 bits A,

Harvard Architecture, Tri-State Buses - Team l 4

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

B, and Destination address. The outputs of the register file are A and B output, all
registers R0-R7 are output pins that way one could monitor the status of all registers.

Figure 3: Simulation of Register File

This screen shot in Figure 3 shows that when the reset is low, and write is high the
register selected by DR is loaded with the data in D. This can be seen as when write
is high the selected registers are always loaded with the whole data set held in D.

Harvard Architecture, Tri-State Buses - Team l 5

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

4 ALU

Figure 4: Schematic of the 16 bit ALU block

The Arithmetic Logic Unit has three primary functions- addition/ subtraction, logical
operations (NOT, AND, NAND, OR, NOR, XOR), and right-bit-shifting. Right bit shift
operations simply shifts the bits one place to the right. This 16 bit ALU utilizes a carry
look ahead generator to calculate carried values in arithmetic operations in order to

Harvard Architecture, Tri-State Buses - Team l 6

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

increase the speed or the adder. The arithmetic unit can also perform subtraction
by inverting the subtracted number and adding 1 to it. This operation yields the sub-
tracted number’s two’s complement. The adder then adds the numbers normally. The
operation can be expressed like this: A - B = A + (B’ + 1) We used a 4-bit carry look
ahead adder to reduce gate delays. The reason we only used 4 carry look aheads is
because after this point the number of gates we would have to implement to generate
the equations for each Cout will be about equal to or over the number of gate delays
in a ripple carry. We then combined 4 in series to be used as a ripple-carry. This was
how we chose to optimize our ALU.The individual 4 bit cell schematic can be seen in
the appendix in Figure 22. The 1 bit schematic can be seen in the appendix in Figure
21.

4.1 Testing of ALU

Figure 5: ALU simulation

Figure 6: ALU Test bench

Harvard Architecture, Tri-State Buses - Team l 7

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

To test the ALU a test bench was used. This test bench took in the 5 Function
Select Bits, and 16 bit A and B values. The test bench was then simulated with Altera
ModelSim and it was found that all of the functions behaved as expected. To make
verification even easier, an if statement was added to the test bench to confirm that all
of the F outputs match the expected output for the input bits. If the output is not equal
to the expected output, then ERROR would be printed to the transcript in ModelSim.
As you can see from figure 7 no errors were printed, therefore the ALU preformed as
expected.

Figure 7: Transcript for ModelSim simulation of the ALU test bench

Harvard Architecture, Tri-State Buses - Team l 8

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

4.2 Function Select

Below is the full list of all ALU functions, as well as their respective FS bits and carry in
value. Function select bits are decoded in the control unit and for all ALU operations
are accompanied by an A address, B address, and destination address.

Function FS4 FS3 FS2 FS1 FS0 Cin
Move 0 0 0 0 0 0 0
Move 0 0 0 0 0 0 1
NOR 0 0 0 0 1 0
NOR 0 0 0 0 1 1
ÃB 0 0 0 1 0 0
ÃB 0 0 0 1 0 1
MOV Ã 0 0 0 1 1 0
MOV Ã 0 0 0 1 1 1
AB̃ 0 0 1 0 0 0
AB̃ 0 0 1 0 0 1
Move B̃ 0 0 1 0 1 0
Move B̃ 0 0 1 0 1 1
XOR 0 0 1 1 0 0
XOR 0 0 1 1 0 1
NAND 0 0 1 1 1 0
NAND 0 0 1 1 1 1
AND 0 1 0 0 0 0
AND 0 1 0 0 0 1
NOT XOR 0 1 0 0 1 0
NOT XOR 0 1 0 0 1 1
Move B 0 1 0 1 0 0
Move B 0 1 0 1 0 1
NOT(AB̃) 0 1 0 1 1 0
NOT(AB̃) 0 1 0 1 1 1
Move A 0 1 1 0 0 0
Move A 0 1 1 0 0 1
NOT (ÃB) 0 1 1 0 1 0
NOT (ÃB) 0 1 1 0 1 1
OR 0 1 1 1 0 0
OR 0 1 1 1 0 1
Move1 0 1 1 1 1 0
Move 1 0 1 1 1 1 1
A 1 0 0 0 0 0
A+1 1 0 0 0 0 1
Ã 1 0 0 0 1 0
-A 1 0 0 0 1 1
A+1 1 0 0 1 0 0
A+2 1 0 0 1 0 1

Harvard Architecture, Tri-State Buses - Team l 9

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

-A 1 0 0 1 1 0
1-A 1 0 0 1 1 1
A+B 1 0 1 0 0 0
A+B+1 1 0 1 0 0 1
Ã+B 1 0 1 0 1 0
B-A 1 0 1 0 1 1
A+B̃ 1 0 1 1 0 0
A-B 1 0 1 1 0 1
Ã+B̃ 1 0 1 1 1 0
Ã-B** 1 0 1 1 1 1
Left Shift in 0 1 1 0 0 0 0
Left Shift in 1 1 1 0 0 0 1
Right Shift* 1 1 0 0 1 0
Right Shift* 1 1 0 0 1 1
Left Shift in 0 1 1 0 1 0 0
Left Shift in 1 1 1 0 1 0 1
Right Shift* 1 1 0 1 1 0
Right Shift* 1 1 0 1 1 1
Left Shift in 0 1 1 1 0 0 0
Left Shift in 1 1 1 1 0 0 1
Right Shift* 1 1 1 0 1 0
Right Shift* 1 1 1 0 1 1
Left Shift in 0 1 1 1 1 0 0
Left Shift in 1 1 1 1 1 0 1
Right Shift* 1 1 1 1 1 0
Right Shift* 1 1 1 1 1 1

Harvard Architecture, Tri-State Buses - Team l 10

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

5 Memory Organization

There are two distinct memory blocks. Instruction sets are stored in a 512x16 read
only memory (ROM) block. Other information is stored in a 512x16 bit random access
memory (RAM) block. The first 17 addresses (000)16 to (010)16 are reserved for spe-
cial function access. Primarily used for multi-cycle instruction execution, a 256 word
by 16 bit hardware stack was implemented with full push and pop functionality.
The main RAM was implemented by the Quartus mega function wizard. For 16-bit
words the DE0 that we used called for a memory format of 16x512 of M9K RAM
module.

Figure 8: Map of random access and read only memories

5.1 Hardware Stack

The processor utilizes an accessible 256x16 hardware stack capable of “push” and
“pop” functionality. This block is separate from the other two memories and is con-
nected directly to the data bus. It is accessed using two control bits that are named
Stack Select (SS). See Control Unit for more information regarding control signals.

Harvard Architecture, Tri-State Buses - Team l 11

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

5.2 Special Function Register Addresses

Our special function registers hold 11 places in memory. 10 are help by our GPIO
pins and 1 is used for PS/2 data. In the figure below LED represents LEDs that are
wired on a breadboard using the 2.5V from the GPIO pins. Buttons also follow the
same method as they are wired off on a breadboard using the 2.5V GPIO pins. For
PS/2, the data that is coming out of the module is held in memory address 8. When
we want to load this data into the processor we just store load this value into a register
using an LDI command.
See section 10 for more information on peripherals.

Address Use
000 LED
001 LED
002 LED
003 LED
004 LED
005 LED
006 LED
007 LED
008 zf8 bit PS/2 output
009 Button
00A Button
00B Button
00C Button
00D Button
00E Button
00F Button
010 Button

Harvard Architecture, Tri-State Buses - Team l 12

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

6 Datapath

Figure 9: The paths along which data can flow (does not show control signals)

The datapath doesn’t use any multiplexers, instead, implementing tristate buffers un-
seen in the figure. For example, in order to choose between the B address and our
constant signal for the B input of the ALU, we have a single bit TriB signal connected
to two tri state buffers. One of the buffers has a not gate in front of it. If TriB is on,
the constant signal is passed to the databus. If TriB is off, the not gate enables the tri
state buffer in front of the B address and passes that onto the data instead. In either
case, only one signal is allowed on the data bus.
In order to choose between output from the stack, RAM, ALU, PC, and ROM, we se-
lected between five tri-state buffers, using a 5 bit control signal MuxD. As stated in the
architecture section, by using one hot encoding, we ensured that the data bus would
only be getting data from one component. For example, if MuxD is 00100, only the
tri-state buffer in front of the ALU is turned on, avoiding data collisions. See Control
Unit for further detail regarding control signals.

Harvard Architecture, Tri-State Buses - Team l 13

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 10: Simulation for Datapath

In this simulation you can see that all of the control variables are given by the test
bench. With the full control word given the processor executes each command and
the results are written to the registers.
The data path allows the ability to read and write from the register file in one clock
cycle. This is utilized through different instructions such as SA <- SA + 1. The data
path also allows for the use of the stack. This stack was designed to handle call and
return functions.

Harvard Architecture, Tri-State Buses - Team l 14

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

7 Control Unit

The control unit is where 16 bit instructions are decoded into the 46 bit control word
that is then released into data path and control components. The control unit was
split into 4 different parts: IR[15 : 14] = 00, 01, 10, 11. This was make the design and
debugging of module easier. The four decoders are then tied together into a mux and
are selected based on the first two bits of the instruction register output.

Figure 11: Schematic of the control unit

Harvard Architecture, Tri-State Buses - Team l 15

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 12: Simulation of the control unit

In figure 12 the first line represents then input which is the output of the instruction
register. The second line represents the output of the control unit which is the 46-bit
control word. This simulation shows that the IR input is correctly being decoded into
a full length control word.
The control unit uses two status bits to make branch decisions such as branch on zero
and branch on negative. These status bits come from the output of the ALU.
Below is the 46-bit control word and what each bit represents. PS[1] is the first bit and
stack[0] is the last bit in this string of bits.

Signal Description
PS[2] Program select controls the program counter. See program counter for details.
IRL[1] Controls if the instruction register is loaded.
SA[3] Source register A address.
SB[3] Source register B address.
DR[3] Destination register address.
WR[1] Controls if a register is written to.

Clear[1] Clears registers.
FS[5] Controls ALU function. See ALU for details.
Cin Carry bit.

MUXD[4] Selects from where data is loaded to the data bus.
10000 Stack output
01000 RAM output
00100 ALU output
00010 PC output
00001 ROM output

MUXA[1] Selects between register B and constant K as ALU input.
K[16] Constant 16 bit value.

MW[1] Controls if RAM is being written to.
Stack[2] Controls hardware stack function.

00 Do nothing
01 Push
10 Pop
11 Reset

Harvard Architecture, Tri-State Buses - Team l 16

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

7.1 Program Counter

The program counter takes the two-bit input PS (program select) from the control unit.
If PS = 00, program counter output remains the same.
If PS = 01, increment the PC because there is a new instruction.
If PS = 10, the data on the data bus goes to the PC.
If PS = 11, the PC is incremented by a constant value.

See the figure 24 in the appendix to see the verilog description of the program counter.

7.2 State Machine

Figure 13: State machine diagram

As the figure shows, the processor only enters the S1 state on its two multi-cycle
instructions: LRLI and CALL. All single cycle instructions keep the processor in state
S0 and increment the program counter normally. LRLI and CALL take two cycles
to complete and they increment the program counter on the first cycle only, as the
processor transitions to the S1 state. The program counter is not incremented during
the second cycle which transitions the processor back to state S0.

Harvard Architecture, Tri-State Buses - Team l 17

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

8 Instruction Set

8.1 Control Word

Figure 14: Control word table

Harvard Architecture, Tri-State Buses - Team l 18

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

8.2 Instruction Set Summary

Mnemonic/Operands Description Cycles Op code
NOP/NA Do nothing 1 0000000
INC/DR, SA Increments SA by 1 and stores into DR. 1 0110000
ADD/DR, SA, SB Adds SA and SB, stores in DR. 1 0110100
ADDC/DR, SA, SB Adds SA and SB with carry, stores in DR. 1 0110101
SUB/DR, SA, SB Subtracts SB from SA, stores in DR. 1 0110110
DEC/DR, SA Decrements SA and stores in DR. 1 0110010
NEG/DR, SA Negate SA and store it in DR. 1 0110001
SHR/DR, SA Shifts SA right one bit. Store in DR. 1 0111001
SHL/DR, SA Shifts SA left one bit. Store in DR. 1 0111000
CLR/DR Clear bits in DR. 1 0100000
SET/DR Sets bits in DR. 1 0101111
NOT/DR, SA Logic NOT of SA, store in DR. 1 0100011
AND/DR, SA, SB Logic AND of SA and SB. Store in DR. 1 0101000
OR/DR, SA, SB Logic OR of SA and SB. Store in DR. 1 0101110
XOR/DR, SA, SB Logic XOR of SA and SB. Store in DR. 1 0100110
MOVA/DR, SA Move SA to DR. 1 0101100
MOVB/DR, SB Move SB to DR. 1 0101010
ADDI/DR, SA, K Add SA and K, store in DR. 1 00001
SUBI/DR, SA, K Subtract K from SA, store in DR. 1 00010
ANDI/DR, SA, K AND SA and K, store in DR. 1 00011
ORI/DR, SA, K OR SA and K, store in DR. 1 00101
XORI/DR, SA, K XOR SA and K, store in DR. 1 00110
LRI/DR, K Loads K to DR. 1 11
LRLI(EX0)/DR Execute state 0 of LRLI. 2 1000010
LRLI(EX1)/K Load long literal K to DR. 2 1000010
LDI/DR, K Load memory at address K to DR. 1 10100
STI/SA, K Store SA to memory at address K. 1 10101
PUSH/SA Push SA on to stack. 1 1000000
POP/DR POP stack to DR. 1 1000001
STR/DR, SB Store SB to memory at address DR. 1 1000101
LDR/DR, SB Load DR with memory at address DR. 1 1000100
CALL(EX0)/ - Call a subroutine. 2 1001110
CALL(EX1)/K Second cycle of subroutine call. 2 1001110
RET/- Return from a subroutine. 1 1001111
BRZ/SA, K Branch to PC + K if SA is 0. 1 10110
BRN/SA, K Branch to PC + K if SA is negative. 1 10111
JUMPR Jump to PC = SA. 1 1001101

Harvard Architecture, Tri-State Buses - Team l 19

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

8.3 Instruction List

Below is a full list of compatible instructions with descriptions, assembler syntax, a list
of operand parameters, and RTL operations.

NOP No Operation INC Increment
Syntax NOP Syntax INC DR, SA
Operands N/A Operands 0 ≤ DR,SA ≤ 7
Operation N/A Operation R[DR]← R[SA]+

1
Description Do nothing but still

increment the pro-
gram counter.

Description Add 1 to value in
source register A
and store it to des-
tination register.

DEC Decrement ADD Addition
Syntax DEC DR, SA Syntax ADD DR, SA, SB
Operands 0 ≤ DR,SA ≤ 7 Operands 0 ≤

DR,SA, SB ≤ 7
Operation R[DR]← R[SA]−

1
Operation R[DR]← R[SA]+

R[SB]
Description Do nothing but still

increment the pro-
gram counter.

Description Add values in
source registers A
and B and store
it to destination
register.

SUB Subtraction ADDC Addition with
Carry

Syntax DEC DR, SA, SB Syntax ADDC DR, SA,
SB, Cin

Operands 0 ≤
DR,SA, SB ≤ 7

Operands 0 ≤
DR,SA, SB,Cin ≤
7

Operation R[DR]← R[SA]−
R[SB]

Operation R[DR]← R[SA]+
R[SB]

Description Subtract value in
source register
B from value in
source register A.
Store in destina-
tion register.

Description Add values in
source registers
A and B and Cin.
Store to destina-
tion register.

NEG Negate SHR Shift Right

Harvard Architecture, Tri-State Buses - Team l 20

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Syntax NEG DR, SA Syntax SHR DR, SA
Operands 0 ≤ DR,SA ≤ 7 Operands 0 ≤ DR,SA ≤ 7
Operation R[DR]← −R[SA] Operation R[DR] ←

srR[SA]
Description Store the two’s

compliment of
soucre register A’s
value to destina-
tion register.

Description Shift bits in source
register A to the
right. Store in des-
tination register.

SHL Shift Left CLR Clear Register
Syntax SHL DR, SA Syntax CLR DR
Operands 0 ≤ DR,SA ≤ 7 Operands 0 ≤ DR ≤ 7
Operation R[DR]← slR[SA] Operation R[DR]← 0
Description Shift bits in source

register A to the
left, store in desti-
nation register.

Description Set bits in destina-
tion register to 0.

SET Set Register NOT Logic NOT
Syntax SHL DR Syntax CLR DR, SA
Operands 0 ≤ DR ≤ 7 Operands 0 ≤ DR,SA ≤ 7
Operation R[DR]← 1 Operation R[DR]←∼ R[SA]
Description Sets bits in des-

tination register to
1.

Description Logic NOT source
register A store in
destination regis-
ter.

AND Logic AND OR Logic OR
Syntax AND DR, SA, SB Syntax OR DR, SA, SB
Operands 0 ≤

DR,SA, SB ≤ 7
Operands 0 ≤

DR,SA, SB ≤ 7
Operation R[DR]← R[SA] ∧

R[SB]
Operation R[DR]← R[SA] ∨

R[SB]
Description Logic AND of

source registers
A and B store
in destination
register.

Description Logic OR of
source registers
A and B store
in destination
register.

XOR Logic Exclusive
OR

MOVA Move SA

Syntax XOR DR, SA, SB Syntax MOVA DR, SA

Harvard Architecture, Tri-State Buses - Team l 21

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Operands 0 ≤
DR,SA, SB ≤ 7

Operands 0 ≤ DR,SA ≤ 7

Operation R[DR]← R[SA]⊕
R[SB]

Operation R[DR]← R[SA]

Description Logic XOR source
registers A and B
store in destina-
tion register.

Description Load source regis-
ter A into destina-
tion register.

MOVB Move SB ADDI Add immediate
Syntax MOVA DR, SB Syntax ADDI DR, SA, K
Operands 0 ≤ DR,SB ≤ 7 Operands 0 ≤ DR,SB ≤ 7

0 ≤ K ≤ 255
Operation R[DR]← R[SB] Operation R[DR]← R[SA]+

zfK
Description Load source regis-

ter B to destination
register.

Description Add source
register A with
zero-filled literal K,
store in destina-
tion register.

SUBI Subtract immedi-
ate

ANDI And immediate

Syntax SUBI DR, SA, K Syntax ANDI DR, SA, K
Operands 0 ≤ DR,SA ≤ 7

0 ≤ K ≤ 255
Operands 0 ≤

DR,SA, SB ≤ 7
0 ≤ K ≤ 255

Operation R[DR] ←
R[SA] min zfK

Operation R[DR]← R[SA] ∧
zfK

Description Subtract source
register A with
zero-filled literal K,
store in destina-
tion register.

Description Logical AND of
source register
A and zero-filled
literal K, store
in destination
register.

ORI Or immediate XORI Exclusive OR with
immediate

Syntax ORI DR, SA, K Syntax XORI DR, SA, K
Operands 0 ≤ DR,SB ≤ 7 Operands 0 ≤ DR,SA ≤ 7

0 ≤ K ≤ 255 0 ≤ K ≤ 255
Operation R[DR]← R[SA] ∨

zfK
Operation R[DR]← R[SA] ∨

zfK
Description Logical bitwise OR

of source
Description Logical bitwise

XOR of source

Harvard Architecture, Tri-State Buses - Team l 22

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

register A and
zero-filled literal

register A and
zero-filled literal K,

K, store in destina-
tion register.

store in destina-
tion register.

LRI Load register im-
mediate

LRLI Load register long
immediate

Syntax LRI DR, K Syntax OR DR, SA, SB
Operands 0 ≤ DR ≤ 7 Operands 0 ≤ DR ≤ 7

0 ≤ K ≤ 255 0 ≤ K ≤ 65535
Operation R[DR]← zfK Operation R[DR]← K
Description Logic zero-filled

literal K to
Description Load register with

unsigned long
destination regis-
ter.

literal K in the EX0
state.

LDI Load data at im-
mediate

Syntax LDI DR, K
Operands 0 ≤ DR ≤ 7 0 ≤

K ≤ 255
Operation R[DR]←M [K]
Description Load destination

register with data
from memory at
literal address
value.

STI Store immediate PUSH Hardware stack
push

Syntax STI, K, SA Syntax PUSH SA
Operands 0 ≤

DR,SA, SB ≤ 7
0 ≤ K ≤ 255

Operands 0 ≤ SA ≤ 7

Operation M [k]← R[SA] Operation PUSHR[SA]
Description Store data from

source register A
to memory at im-
mediate address.

Description Stack operation
”Push” data at
source register A
to the hardware
stack.

POP Hardware stack
pop

STR Store register to
memory

Syntax POP DR Syntax STR DR, SA
Operands 0 ≤ DR ≤ 7 Operands 0 ≤ DR,SA ≤ 7

Harvard Architecture, Tri-State Buses - Team l 23

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Operation R[DR]← POP Operation M [R[DR]] ←
R[SA]

Description Stack operation
”Pop” data off the
hardware stack
to destination
register.

Description Store data from
source register A
to memory at ad-
dress in destina-
tion register.

LDR Load from mem-
ory to register

CALL Call

Syntax LDR DR, SA Syntax CALL K
Operands 0 ≤ DR,SA ≤ 7 Operands 0 ≤ K ≤ 255
Operation R[DR] ←

M [R[SA]]
Operation PUSHPC + 1

PC ← zfK
Description Load data from

memory address
Description Call subroutine,

push program
stored in source
register A and

counter plus one
to the stack. Must

store it in destina-
tion register.

execute NOP two
instructions after.

JMPR Jump to address
in register.

RET Return from sub-
routine

Syntax JMPR SA Syntax RET
Operands 0 ≤ SA ≤ 7 Operands N/A
Operation PC ← R[SA] Operation PC ← POP
Description Jump to memory

at address stored
in source register
A.

Description End subroutine.
Pop stack and put
it into PC.

BRZ Branch if zero BRN Branch if negative
Syntax BRZ SA, K Syntax BRN SA, K
Operands 0 ≤ SA ≤ 7 0 ≤

K ≤ 255
Operands 0 ≤ SA ≤ 7 0 ≤

K ≤ 255
Operation if(R[SA] == 0)

PC ← PC + seK

Operation if(R[SA] < 0)
PC ← PC + seK

Description The program
counter is incre-
mented by a sign
extended literal if
source register A
is 0.

Description The program
counter is incre-
mented by a sign
extended literal if
source register A
is negative.

Harvard Architecture, Tri-State Buses - Team l 24

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 15: Instruction format per Instruction

Harvard Architecture, Tri-State Buses - Team l 25

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

9 CPU

9.1 Design and Features

This processor utilizes a number of advanced instructions including ADDC, STR, LDR,
PUSH, POP, CALL and Return.
This processor allows an instruction execution and instruction fetch each clock cycle,
making most instructions only take one cycle to complete. However, this processor
does feature two multi-cycle instructions - Call and LRLI. The hardware stack is used
to implement the call and return instructions. The call function pushes the PC + 1
on to the stack. Then when return is called it will be popped back onto the program
counter to return from the subroutine.
The processor is also capable of storing data from a register to a memory address
specified by another register using the STR instruction, as well as loading in the same
way using the LDR instruction.
Instructions are loaded from ROM into the instruction register. The instruction that
is loaded is based on the value of the program counter, and after being loaded the
instructions are decoded in the control unit from their 16 bit value from ROM into a 46
bit control word. This control word is used to manipulate the data path to perform the
actions which the instruction calls for.
The max clock frequency was tested using the PS/2 program. Any clock speed over
110MHz corrupted the output data, and the program would no longer work as in-
tended. See section 10.2 for more information on this program.

Figure 16: Schematic for Control Unit, Program Counter, ALU, Memory, Register File,
and Stack

Harvard Architecture, Tri-State Buses - Team l 26

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 17: Simulation of Complete CPU

The simulation above is a screen shot of our CPU test bench in which we tested
our call and return functions. Here you can see that after PC 10001, PC jumps to
10000000, where the subroutine loads a literal value to R1 and then returns to the
previous PC.

Harvard Architecture, Tri-State Buses - Team l 27

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

10 Peripherals

10.1 General Purpose Input and Output

Figure 18: The schematic for a single GPIO pin

The General Purpose Input and Output (GPIO) peripheral is responsible for receiving
input and communicating output through pins on the DE0. The schematic of an in-
dividual GPIO pin can be seen in Figure 18. These cells are the placed together to
make larger blocks, these blocks can be seen in figure 19.

Harvard Architecture, Tri-State Buses - Team l 28

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 19: The schematic to manipulate 8 individual GPIO pins

Harvard Architecture, Tri-State Buses - Team l 29

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

10.2 Personal System/2 Keyboard

Figure 20: Full schematic of PS/2 module

Figure 20 contains the top level design for the PS/2 peripheral. This consists of a
receiver, a first in first out buffer (FIFO), and finite state machine for control (FSM).
The basic idea is to use the FSM to keep track of the F0 packet which is the break
code. After this break code has been received, the next packet should be the make
code of the key that was pressed. This make code is then written into the FIFO buffer.
The output of the FIFO buffer is sent to a switch statement that converts the hex
code output of the PS/2 to ASCII so that it can be converted to letters, numbers and
symbols. We plan to use the ASCII converter to control which LEDs light up. In the
configuration in figure 20 the output of the ASCII converter is connected to 8 LEDs
which will display the output of the circuit. [2]

Harvard Architecture, Tri-State Buses - Team l 30

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

11 Example Program

11.1 McGuire

The following is the ROM for a program that flashes selected LEDs. It does this by
writing the GPIO pin of each LED with a 1 and then writing a 0 to it shortly after. This
is executed in an infinite loop as indicated by the ”JUMPR 0” instruction.

NOT R7, R2
8′b00000000 : out[15 : 0]← 16′b0100011111010010;
ORI R3 2
8′b00000001 : out[15 : 0]← 16′b0010101100000010;
STI R7, 0
8′b00000010 : out[15 : 0]← 16′b1010111100000000;
NOP (skips AD 1)
8′b00000011 : out[15 : 0]← 16′b0000000000000000;
STI R7, 2
8′b00000100 : out[15 : 0]← 16′b1010111100000010;
NOP (skips AD 3)
8′b00000101 : out[15 : 0]← 16′b0000000000000000;
STI R7, 4
8′b00000110 : out[15 : 0]← 16′b1010111100000100;
STI R7, 5
8′b00000111 : out[15 : 0]← 16′b1010111100000101;
STI R7, 6
8′b00001000 : out[15 : 0]← 16′b1010111100000110;
STI R7, 7
8′b00001001 : out[15 : 0]← 16′b1010111100000111;
STI R3, 0
8′b00001010 : out[15 : 0]← 16′b1010101100000000;
NOP (skips AD 1)
8′b00001011 : out[15 : 0]← 16′b0000000000000000;
STI R3, 2
8′b00001100 : out[15 : 0]← 16′b1010101100000010;
NOP (skips AD 3)
8′b00001101 : out[15 : 0]← 16′b0000000000000000;
STI R3, 4
8′b00001110 : out[15 : 0]← 16′b1010101100000100;
STI R3, 5
8′b00001111 : out[15 : 0]← 16′b1010101100000101;
STI R3, 6
8′b00010000 : out[15 : 0]← 16′b1010101100000110;
JMPR 0
8′b00010001 : out[15 : 0]← 16′b1001101011101110;
NOP
default : out← 16′b0000000000000000;

Harvard Architecture, Tri-State Buses - Team l 31

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

11.2 Souder

Below is the ROM for the program which turns on the LED’s 2 4 5 6 7. This ROM sets
the memory addresses for the special function registers associated with the LED’s
last 2 bits to 11, the first 1 means that we will be writing to the LED and the second 1
is the data to be written so the data written is a 1 which means that the light will turn on.

NOT R7, R2
8′b00000000 : out[15 : 0]← 16′b0100011111010010;
LRI R7, 0
8′b00000001 : out[15 : 0]← 16′b1010111100000000;
NOP
8′b00000010 : out[15 : 0]← 16′b0000000000000000;
LRI R7, 2
8′b00000011 : out[15 : 0]← 16′b1010111100000010;
NOP
8′b00000100 : out[15 : 0]← 16′b0000000000000000;
STI R7, 4
8′b00000101 : out[15 : 0]← 16′b1010111100000100;
STI R7, 5
8′b00000110 : out[15 : 0]← 16′b1010111100000101;
STI R7, 6
8′b00000111 : out[15 : 0]← 16′b1010111100000110;
STI R7 7
8′b00001000 : out[15 : 0]← 16′b1010111100000111;
LDI R0, 0
8′b00001001 : out[15 : 0]← 16′b1010000000000000;
LDI R1, 1
8′b00001010 : out[15 : 0]← 16′b1010000100000001;
LDI R2, 2
8′b00001011 : out[15 : 0]← 16′b1010001000000010;
LDI R3, 3
8′b00001100 : out[15 : 0]← 16′b1010001100000011;
LDI R4, 4
8′b00001101 : out[15 : 0]← 16′b1010010000000100;
LDI R5, 5
8′b00001110 : out[15 : 0]← 16′b1010010100000101;
LDI R6, 6
8′b00001111 : out[15 : 0]← 16′b1010011000000110;
LDI R7, 7
8′b00010000 : out[15 : 0]← 16′b1010011100000111;
JMPR 0
8′b00010001 : out[15 : 0]← 16′b1001101011101110;

Harvard Architecture, Tri-State Buses - Team l 32

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

NOP
default : out[15 : 0]← 16′b0000000000000000;

Harvard Architecture, Tri-State Buses - Team l 33

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

11.3 Epifano

This program will take input from the keyboard at memory address 8. The program
will be constantly storing whatever the keyboard outputs to LED 0. The LED will only
turn on if the last two bits of the make key is 11. For this keyboard, K and J meet
this requirement. The program will jump back to the first instruction and do it all over
again. This program verifies three things: the keyboard sends information to memory,
the data that is sent is the correct value per key, and the GPIO is correctly reading the
data and responding correctly to the data.

LDI,R2, 8
8′b00000000 : out[15 : 0]← 16′b1010001000001000;
STI,R2, 0
8′b00000001 : out[15 : 0]← 16′b1010101000000000;
JUMPR,PC → 0
8′b00000010 : out[15 : 0]← 16′b1001101011111101;

Harvard Architecture, Tri-State Buses - Team l 34

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

12 Errata

Some things on the processor work a little differently than expected. One example of
this is the branch instructions. For the branch instructions to work properly the status
signals must be on the data bus one clock cycle before. The easiest way to make
sure that the instruction is used correctly include a NOP one instruction before the
branch instructions. The JUMPR instruction works by increasing the program counter
by the immediate value. This means that the function behaves like an offset. The
maximum clock frequency was determined by running the PS/2 peripheral program
until it corrupted. This is because the over clocked ROM used branch instructions
which are implemented differently.

13 Appendix

Figure 21: 1-bit ALU schematic

Harvard Architecture, Tri-State Buses - Team l 35

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 22: 4-bit ALU schematic

Figure 23: Verilog Description of Instruction Register

Harvard Architecture, Tri-State Buses - Team l 36

Souder, Epifano, McGuire, Pranvoku, Drexel Team l Computer Architecture Spring 2017

Figure 24: Verilog Description of Program Counter

References

[1] ”Microprocessor with Harvard Architecture”, 5034887 A, 2017.

[2] P. Chu, FPGA Prototyping By Verilog Examples. Somerset: Wiley, 2011.

Harvard Architecture, Tri-State Buses - Team l 37

	Overview
	Processor Architecture
	Register File
	ALU
	Testing of ALU
	Function Select

	Memory Organization
	Hardware Stack
	Special Function Register Addresses

	Datapath
	Control Unit
	Program Counter
	State Machine

	Instruction Set
	Control Word
	Instruction Set Summary
	Instruction List

	CPU
	Design and Features

	Peripherals
	General Purpose Input and Output
	Personal System/2 Keyboard

	Example Program
	McGuire
	Souder
	Epifano

	Errata
	Appendix

