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Abstract—Early and accurate diagnosis of Alzheimers disease
is an unsolved problem. Practitioners have been seeking a
noninvasive diagnostic tool to assess a patients level of cognitive
impairment. The clock drawing test is one such tool, where
patients are asked to draw an analog clock showing the time
10 past 11. Traditionally the clock test, combined with a battery
of other neuropsychological tests, is evaluated by a neuropsy-
chologist in order to reach a diagnosis. However, this is a time
consuming as well as subjective process, with a significant rate of
misdiagnosis. Researchers are now looking at machine learning
algorithms to help form a relationship between the various
features obtained from the clock drawing test and a degree of
cognitive impairment. To do so, we extracted hundreds of features
from the clock drawing test using a smart pen and tablet. We
then used information theoretic feature selection to determine the
most relevant features, and used them to train a neural network
type classifier. The classifier is used to analyze these features
and identify each patient as SCI (Subtle Cognitive Impairment),
MCI (Mild Cognitive Impairment), or AD (Alzheimer’s Disease).
Preliminary results with a non-optimized classifier indicate a
differential diagnosis accuracy of mid 70% to low 80% are
achievable. These results, if further improved upon, can allow
general health practitioners to use clock drawing test as a
preliminary screening tool and recommend patients for further
neuropsychological testing if warranted.

I. INTRODUCTION

A. Medical Background

Alzheimer’s disease (AD) is a major public health problem;
by 2050 it is estimated that 14 million people may be affected
by this illness [1]. In recent years much interest has been gen-
erated in the diagnosis and characterization of Mild Cognitive
Impairment (MCI) syndrome which is believed to be a pro-
drome to AD as well as other dementia disorders. A variety of
MCI subtypes have been identified including patients present-
ing with predominant amnestic (aMCI), dysexecutive (dMCI),
and a combined or mixed (mxMCI) phenotype. Past research
also suggests that each MCI subtype may eventually make the
conversion to dementia [2]. As disease modifying treatment
for AD becomes available identifying patients who are at risk
for emergent MCI/dementia; and identifying patients early in
the course of their illness will be particularly important.

The Clock Drawing Test (CDT) is a widely used neuropsy-
chological test to differentiate between unaffected individuals,
MCI subtype, and different dementia syndromes [3]. The CDT
is used because of its ability to characterize dementia and
MCI syndromes because of the large amount of data that is
produced and the analysis of errors in the clock. One limitation
of the CDT as a diagnostic tool is that the current scoring
system is not able to capture small but significant features that
could signal the presence of an early cognitive impairment.

The original CDT contains two testing conditions: command
and copy. Both conditions ask the patient to draw an analog
clock at a time ten after eleven. The way the command is
given forces the patient to decode the meaning and extract the
real command. The command condition tests a patient’s au-
ditory comprehension, visual memory and abstraction. Before
the drawing is executed, the verbal command must first be
understood, and then the subject must recall the appropriate
visuospatial image from memory. The copy condition, on the
other hand, relies heavily on the visuospatial ability of the
patient. Both of these conditions are important because the
properties that each test do not overlap with one another. [19]

Fig. 1. Example of Copy Clock Condition for two different patients

Recently, a digital version of the CDT (dCDT) [18] has
been developed by Lahey Clinic and MIT in collaboration with
the ClockSketch Consortium. The dCDT employs a digital
pen to capture patients drawings. This device is able to store



over 350 different variables and each variable in the dataset
corresponds to: a construction variable related to the how the
clock is drawn, a time variable related to how long it takes to
draw each construction variable, or a spatial variable related to
where each construction variable is drawn. The solution to the
aforementioned problem is solved and the data is now readily
available to practitioners. In this paper we discuss the use of
machine learning in conjunction with the dCDT to achieve
higher than practitioner level classification accuracies given
only clock drawing data.

B. Machine Learning Applied to dCDT

In recent years, machine learning has proved to be an
invaluable tool in the medical field due to its capability to
automate processes which are usually time-consuming and
subjective, to get unbiased repeatable results [9]. Additionally,
machine learning is extremely effective at handling big data
that is difficult for humans to interpret. Medical technology has
the ability to generate far more digital information than ever
before allowing the research community to take advantage of
machine learning techniques and their ability to tackle datasets
with high dimensionality and a large amount of samples.
Moreover, machine learning is helpful in solving issues such as
human interpretability, lack of data availability, or unbalanced
data [9]. The techniques that were used are explained in greater
detail in the approach section.

To predict the cognitive state of a patient based on clock
drawing data a strong classifier is needed. In the past oth-
ers have attempted to classify cognitive impairments using
the clock drawing test with gaussian SVM, random forests,
CART, C4.5, boosted decision trees, and regularized logistic
regression. This paper also covered the use of mRMR feature
selection to use the top 200 features with different classifiers
mentioned above [4]. Various types of neural networks such
as feedforward neural networks and autoencoders have been
used as well with promising results [15], [10].

C. Feature Selection applied to dCDT

In addition to a classifier, a proper feature selection al-
gorithm is needed as well. This especially holds true for a
high-dimensional dataset such as clock drawing data with
over 350 features and only 196 instances. Many of these
features are irrelevant, redundant, or noisy data and removing
these types features has been shown to speed up processing,
improve performance, and augment result comprehensibility
[11]. Another benefit of feature selection, especially for the
clock drawing data, is the ability to give a ranking to the
most relevant features. This information can be very beneficial
to doctors because it can give them understanding into what
decision/memory thinking process during the clock drawing
are predictors of cognitive impairment.

When it comes to feature selection there are three main cat-
egories of selection algorithms: wrapper methods, embedded
methods, and filter methods. In wrapper methods, the objective
function to derive the optimal amount of features is the
classifier itself. An exhaustive search for the ideal combination

of features using wrapper methods exponentially increases
in computational complexity as the number of features in-
crease. For this reason, algorithms such as sequential search,
Genetic Algorithms and particle swarm optimization attempt
to heuristically find an ideal set of features to maximize the
performance of the classifier [6].

Embedded methods, such as LASSO and Elastic Net, also
attempt to produce an objective function of the model. In
embedded methods, the goal is to use regularization to find an
objective function to fit the dataset. To regularize the objective
function, a penalty factor based on the weights of feature
coefficients is added to the cost along with the mean squared
error of the function. In this way, an objective function can
be formed that doesn’t over-fit the data and as the feature
coefficient weights decrease the most relevant features can be
determined [16].

The last category of selection algorithms is filter methods.
In filter methods, ranking criteria is used score the relevancy
of each feature. In this way, a score is determined for each
feature and the most relevant features are selected based on
a threshold [6]. Different types of ranking criteria consist of
correlation coefficient, variance, and information theory. For
our applications, information theory was the chosen feature se-
lected algorithm. In information theory, a score is given based
on the mutual information between the label and the given
feature. There are also several more advanced information
theoretic criteria that take into account dependency between
the feature and label as well as independence between features
[5]. The concept of mutual information and the information
criteria used is explained in more detail in the approach.

To represent wrapper, embedded, and filter selection ap-
proaches, a selection method was conducted representing each
of these approaches for extracting the relevant clock data. The
method chosen for wrapper approach was Recursive Feature
Elimination (SVM-RFE). This method was selected due to it’s
computationally quick speed. The method chosen for embed-
ded approach was Elastic Net. Elastic Net is a combination of
both Ridge and LASSO regression which makes the algorithm
more robust in feature selection (explained in greater detail in
approach). Finally, Information theory was the selected filter
approach because of its flexibility in practical applications (the
multitude of criterion functions available) as well as quick
computational speed. Another advantage of information theory
and feature ranking in general is the fact that they do not rely
on learning algorithms which can be biased since the data is
being changed to fit the learning algorithm [6].

D. Standards and Constraints

1) Standards: Through this project the following standards
were utilized:

• Administration of Clock Drawing Test
• PEP 8 – Style Guide for Python [7]
• MATLAB Programming Style Guidelines [8]
2) Constraints: This project was constrained by the follow-

ing:
• Size of data set (196 patients)



• Neural Network Size - Avoiding over fitting and under
fitting the neural network to the data set based on the
depth and width of the network

• Vectorization of data from pen into feature vector not all
data from original drawing is capture ex drawing more
than 12 digits.

II. APPROACH

A. Patient Acquisition

Participants studied in the current research were recruited
from Rowan University’s New Jersey Institute for Successful
Aging, Memory Assessment Program (MAP). Patients were
excluded if there was any history of head injury, substance
abuse, or major psychiatric disorders. For all participants
a knowledgeable family member was available to provide
information regarding functional status. All MAP patients
underwent a comprehensive neuropsychological evaluation.
A clinical diagnosis was determined for each patient at an
interdisciplinary team conference.

B. Engineering Design

The goal of this project was to differentiate different levels
of cognitive decline in patients using the clock drawing test.
To differentiate the classes we broke the problem into many bi-
nary problems, three class problems, and a four class problem.
The four classes investigated are Subtle Cognitive Impairment
(SCI), Amnestic MCI (MCI1), mixed MCI (MCI2) and AD.

When considering the entire dataset, four labels are present.
This creates a four-class problem, but subdivisions of the
dataset were considered for two- and three-class problems as
well. Practically, while the four-class problem would be useful,
the differentiation between healthy (SCI) and Alzheimer’s
Disorder (AD) is typically very easy to observe. It follows that
three-class problems which consider the two MCI classes and
only SCI or AD would be useful. Additionally, each of the six
two-class problems (all pairwise combinations of two classes)
were considered. The purpose of considering each binary case
is to determine how separable each of the classes are, and to
provide a way to eliminate uncertainty between two diagnoses.
All of the test cases are listed explicitly as follows:
Two class problems: SCI vs MCI1, SCI vs MCI2, SCI vs AD,
MCI1 vs MCI2, MCI1 vs AD, and MCI2 vs AD
Three class problems: SCI vs MCI1 vs MCI2, MCI1 vs MCI2
vs AD
Four class problem: SCI vs MCI1 vs MCI2 vs AD
In performing these experiments we applied information the-
ory feature selection algorithms to the problem. Using each
algorithm (MI, MRMR, JMI, CMIM) features were selected
in intervals of 25 from 25 to 125.The feature selected data sets
were run through the neural network architectures for each
experiment. The neural network architectures tested were 1
layer 50 nodes, 2 layer 10 nodes each, and 2 layer 20 node first
layer 10 node second layer. This lead to 540 results, for each
network architecture and experiment the best performance
(validation accuracy) with the lowest confidence interval was
selected (see Table I).

C. Data Preprocessing

Before the raw clock drawing test data could be processed
by feature selection algorithms, several different stages of pre-
processing were required. First, there were some features that
were clear duplicates of one another (i.e. features specifying
what was drawn before a particular element of the clock,
both with and without noise. In these cases, noisy features
were omitted from the data). Additionally, there was a set of
very sparse features all relating to the center dot. Since the
center dot was rarely drawn and any individual who did not
draw the dot did not have data for these features, only the
feature specifying the number of strokes for the center dot
was retained. Non-clock drawing data such as age was also
removed.

All continuous features (such as time-based features, rather
than categorical features that refer to specific components
of the clock) were standardized to give all of the features
the same range. To use the feature section algorithms all
continuous features also had to be discretized; this was done by
binning the data into 10 bins. The data was binned by using the
discretization function in Gavin Brown’s Matlab toolbox [5].
The process of binning takes continuous variables and divides
them into N categorical values, where the N bins have equal
ranges. This discretization was necessary in order to produce
the probability density functions used by Brown’s toolbox.

Another issue that had to be resolved before feature se-
lection could be performed was dealing with missing data.
Throughout the test, if patients omitted particular digits or
hands from their clocks, those columns appeared missing
in the dataset. For example, if a patient didn’t write the
number three in the test, features like time to draw digit
three, dimensions of digit three, etc. would be blank. In order
to resolve this issue, a KNN search algorithm was used to
fill in these missing sections. In KNN search, the algorithm
found the k nearest neighbors (patients) that have the closest
euclidean distance to features of the patient with the missing
data. Once these k nearest neighbors were found, their features
were averaged together and that number was filled in for
the patient with missing data [14]. To find the K-nearest-
neighbors, the euclidean distance is only calculated on features
that are completely filled in as well as relevant to the missing
features. For example, if a patient is missing data for the digit
three features, a KNN search will be performed on features
pertaining to digit one and two (assuming these are completely
filled in). Its also assumed that the patient draws digit three
similar to its KNNs based on digits one and two. For this
reason, the average of the patient’s KNN digit three features
is calculated and filled in for the missing sections. To account
for patients who forgot digits and or hands when drawing their
clock, a binary variable was included where a one is entered
if the digit was missing and zero is entered if it was written.
In this way, there are no empty blocks in the data set while
still taking into account missing features.



D. Feature Selection: Wrapper Approach

As previously mentioned, wrapper methods are exhaustive
searching methods that use the performance of a classifier
as the evaluation method for feature selection. The wrapper
approach chosen was Recursive Feature Elimination with a
Linear SVM Kernel (SVM-RFE). RFE is a sequential search-
ing method that starts with the complete set of features in
the dataset and sequentially eliminates features, one at a
time. For each current set of selected features, the classifier
is evaluated. Linear SVMs contain an explicitly computed
weight vector which contains weights associated with each
feature. These weights are used as a ranking criterion for
RFE, where the lowest-ranking feature is removed [21]. This
process is performed until every feature except one has been
eliminated, and the feature set that produced the highest SVM
classification performance is the optimal set of features.

Tables XIV to XXII include results for the SVM-RFE
Wrapper method for each test case and each neural network
architecture, and Table III shows the overall best results from
this method.

E. Feature Selection: Elastic Net Approach

The embedded approach used approach used was Elastic
Net. As explained in the introduction, Elastic Net attempts
to produce an objective linear model to fit the data through
regularization. In this way, an ideal linear model is created
where the minimization of mean-squared-error as well as
feature coefficients is taken into account when minimizing
function cost. Elastic Net is a hybrid of LASSO and Ridge
regression because it attempts to minimize both the L1 and L2
norm of the feature coefficients. As this happens, features drop
out as coefficients drop to zero therefore becoming a feature
selection algorithm. Moreover, Elastic Net has been seen as
particularly useful when the number of predictors is much
bigger than the number of observations (the clock drawing
data has over 350 features but only 196 observations) [17].
By contrast, the LASSO is not a very satisfactory variable
selection method when p >> n making Elastic Net the
embedded approach of choice. Elastic Net equation is shown
in Eq(1) and Eq(2).

β = min(
1

2N

N∑
i=1

(yi − xTi β)2 + λPα(β)) (1)

Pα(β) =
1− α
2
||β||22 + α||β||1 (2)

In Eq(1) and Eq(2) y represents the class labels, x represents
the features and β is the feature coefficients. α is a value
between 0 and 1 and this value dictates the weights of the L2
norm vs the L1 norm during minimization. When α is 0, the
L1 norm drops out of equation (Ridge regression) and when α
is 1, the L2 norm drops out (LASSO regression). Finally, λ is a
scalar value that increases the weight of the feature coefficients
during minimization. If λ is very large, β is weighted heavily
in the cost function and more β coefficients will drop out.
Likewise, a small λ won’t weigh βs in the cost function and

the objective function would be calculated based on mean-
squared error alone (βs will be large).

For the reason stated above, λ is the main parameter that
dictates whether the objective function over-fits (λ too large) or
under-fits (λ too small) to the data. To find the ideal λ for each
test case 10-fold cross validation was used in Matlab while
incrementally increasing λ at a set α. Through this method,
the ideal λ was found for each test case, and features were
selected based on the β coefficients that did not drop out at
that λ. Tables XIV to XXII show the results of all the Elastic
Net tests, Table IV shows the resultant λ values of each test,
and Table II shows the top results of Elastic Net for each test
case (see appendix).

F. Feature Selection: Information Theory Approach

Different information theoretic algorithms were applied to
the clock drawing dataset. These algorithms were Mutual
Information (MI) Eq(3), Minimum Redundancy Maximum
Relevancy (MRMR) Eq(4), Joint Mutual Information (JMI)
Eq(5), and Conditional Mutual Information Maximization
(CMIM) Eq(6). This paper used implementations written by
Gavin Brown [5].

I(X;Y ) =
∑
xεX

∑
yεY

p(xy)log(
p(xy)

p(x)p(y)
) (3)

Shannon Mutual Information between two random variables
is defined by conditional entropy. Entropy of the class variable,
Y, is desired to be very low in order to maximize classification
performance. For a given feature X, Mutual Information be-
tween X and Y is a measure of the change in entropy of Y due
to the presence of X. Therefore, a high Mutual Information
between a feature and the class label indicates that the feature
is a good predictor of the class label.

For example assume variable Y represented grades in a
classroom where half the class was passing and half the class
was failing. This would mean Y has high entropy because
there’s a 50% chance of choosing a passing/failing student
(through random guessing). Now, if a feature X was added
that represents the amount of hours each student studies, the
mutual info between these variables is very high (assume
that kids who passed studied more). Therefore variable X
reduces the amount of uncertainty in variable Y (we are more
certain who passed based on study time). If feature X was
completely independent of Y, then p(xy)=p(x)p(y) and the
mutual information between variables would be zero.

Jmrmr = I(Xn;Y )− 1

n− 1

n−1∑
k=1

I(Xn;Xk) (4)

Minimum Redundancy Maximum Relevancy includes a
consideration of redundancy in addition to maximizing the
Mutual Information of a feature and the class label. When
selecting multiple features, redundancy is the sum over the
currently selected features of their Mutual Information with the
new feature considered to be added. The purpose of MRMR



is to eliminate redundant features while still selecting a set of
features that enables an accurate prediction of the class label.

Jjmi = I(Xn;Y )− 1

n− 1

n−1∑
k=1

[I(Xn;Xk)− I(Xn;Xk|Y )]

(5)
Joint Mutual Information is equivalent to the First-Order

Utility equation provided by Gavin Brown. [5] The first two
terms of this equation are the Shannon Mutual Information
of the feature with the class label and the negative term for
the feature’s redundancy with the currently selected features.
Lastly, an additional positive term is included for the con-
ditional redundancy. That is, the redundancy between two
features given a class label. This term is an indication of
first-order interaction between two features that causes that
particular pair of features to be useful in the prediction of the
class label.

Jcmim = I(Xn;Y )−maxk[I(Xn;Xk)− I(Xn;Xk|Y )] (6)

Conditional Mutual Information Maximization is similar to
JMI; however, CMIM takes a pessimistic approach. Instead
of taking the sum of all first order interactions (difference
between redundancy and conditional redundancy) CMIM only
considers the Xn;Xk first order interaction that outputs the
maximum score. For this reason, CMIM selects the Xk based
on the interaction with an already selected feature Xn that
gives the lowest score J. Therefore, if Xk has high redundancy
and low conditional redundancy with only one other feature,
that Xk will have a low score regardless of the interactions of
Xk with other features.

G. Balancing the Data

Once the relevant features are selected using each of the
approaches covered above and before they are trained using
a classifier, the data must be balanced. An ideal data set for
training has an equal amount of samples from each dataset.
When the sample sizes of classes are highly skewed, the
accuracy on the majority class examples is overwhelmingly
higher than the one achieved on the minority classes [13]. This
has a significant affect on the clock drawing data because the
largest class (AD class) has 59 patients and the smallest class
(MCI1 class) only has 26 patients.

For this reason, The Synthetic Minority Oversampling Tech-
nique (SMOTE) was used. This technique adds synthetic
data points to the smaller classes thus creating a balanced
dataset.The first step in SMOTE is defining the K-nearest-
neighbors to search for (set to five by default). Once this is
defined, the algorithm picks a random instance of a minority
class and randomly selects one of its KNN. Synthetic instances
are then created through interpolation along the vector-space
between the randomly selected instance and its KNN. This is
done for several instances of each minority class until all the
minority classes are the same size as the majority class [13].

H. Training of the Classifier

Once the relevant features are selected and the data is
balanced using SMOTE, the data is then ready to be trained
by the classifier. The classifier that was selected was a feed-
forward neural network. The neural network was chosen as
the selected classifier because they have been particularly
successful in classifying medical data. Additionally, they have
a varying number parameters one can tune by changing the
number of hidden layers and the number of nodes per hidden
layer, allowing the network to be aware of varying degrees
of complexity within a data set [15]. Moreover, the neural
network attained significantly higher results than when other
classifiers were used on the clock drawing data such as random
forests and SVMs.

Because the data only consisted of 196 samples, the neural
networks were kept relatively small to avoid over-fitting. Three
different neural network sizes were used: 1 hidden layer of 50
nodes, 2 hidden layers of 10 nodes, and 2 hidden layers of
20 nodes and 10 nodes. Each of these structures were trained
on each of the four information theoretic criterion functions
covered above in order to determine the highest performer
of each test case (see appendix). Ten-fold cross validation
was also implemented during the training of the data thus an
average number for the performance metric was obtained along
with a confidence interval and standard deviation. Moreover,
adam was the optimizer used and early stopping was used to
prevent over-fitting. It’s also important to note that even though
the data was trained after using SMOTE to create artificial
samples, the performance metrics obtained only pertain to the
correct classifications of real samples.

III. EXPERIMENTS AND RESULTS

A. Information Theoretic Results

Experiments were run as outlined in the above approach.
Data was collected for each FS criterion. The selected results
were chosen according to a ranking criteria (see equations
3,4,5, and 6). The least complex model that obtained the best
performance with a narrow confidence interval with as few
features chosen as possible was chosen as the best result in
each test case (see figure 2).



Fig. 2. Bar chart of the highest performing results for each test case using
information theoretic FS criteria (see table I for values). Error bars correspond
to 95% CI.

Based on the information theoretic performance results,
each of the binary test cases seemed to significantly outper-
form the multi-class test cases. All of the binary tests case
performances surpassed 80% while the multi-class test cases
were all below 80%.

B. Elastic Net and Wrapper Results

In addition to the results seen above these experiments were
also replicated on the Elastic Net and wrapper based feature
selection algorithms. Elastic Net uses the objective function
seen in Eq(1) to select the features based on the mean squared
error while also adding in regularization terms for the L1 and
L2 norm.

Fig. 3. Bar chart of the highest performing results for each test case using
Elastic-net technique for feature selection. Error bars correspond to 95% CI.

It was found that Elastic Net achieved on average higher
accuracies for the binary experiments while it performed on
par with the information theory feature selection in the 3 and
4 class problems (see figure 3). Table II in the appendix shows
these results.

The Recursive Feature Elimination approach performed
similarly to the other two approaches for the binary cases,
with a notably high performance and small confidence interval
for the MCI-1 vs MCI-2 case. This method also achieved the
highest accuracies for the 3 and 4 class problems. These results
are shown in Table III.

Fig. 4. Bar chart of the highest performing results for each test case using
RFE. Error bars correspond to 95% CI.

IV. CONCLUSION

A. Statistical Significance

For the majority of the final results, the confidence intervals
of each method overlap, showing that the results are not
statistically significantly different from one another. This is
not the case for the MCI-1 vs AD result for Elastic Net, which
significantly outperformed the other two methods. Within the
Information Theoretic approaches (Tables V through XIII) the
results are overlapping significantly more. This is due to the
similarity of each of the information theoretic formulas, which
are all based on mutual information.

It is also worth mentioning that for the most part the
binary test cases out performed the multi-class test cases and
compared to some of the higher binary results (especially
in Elastic Net), the differences are statistically significant.
Moreover, the four class test case (healthy vs MCI1 vs MCI
2 vs AD) had the lowest performance in all three feature
selection approaches.

B. Applications of Findings

The problem of diagnosing Alzheimer’s is one that requires
a multidisciplinary set of evaluation techniques in order to
acquire a truly accurate diagnosis. However, using only the
clock drawing test, the full four-class problem achieved an
accuracy of 64%. While this is not useful in and of itself,
binary case tests all have accuracies around 80%. The bi-
nary test cases will allow us to differentiate between the
different classes and provide a preliminary evaluation. It is
inexpensive to administer this test, and it does not require
any significant amount of training to administer. Since the
evaluation is purely objective and consequently does not
involve a neuropsychological professional, it can be quickly



and regularly administered in a general practitioner’s office
to provide patients with a preliminary indication of cognitive
decline, and the practitioner can recommend the patient for
further evaluation by a professional.

Additionally, all of the binary test cases had performances
exceeding 80% and for Elastic Net all of the binary results
exceeded 90% (excluding MCI2 vs AD). In cases where a
professional is unsure whether to diagnose a patient as MCI1
or MCI2, for example, the professional can use the binary
classifier to aid in their diagnosis.

C. Future Work

Overall, the binary classifiers performed very well and the
three-class and four-class problems did not exceed 80%. A
potential solution to the poor performance of the multi-class
classification problems would be to implement a one-versus-
one ensemble classifier from the binary classifiers. [20] These
results can also be further validated and the confidence interval
can possibly be reduced with an increased dataset as the
dataset will continue to grow.

Additional future work that could be done in attempt to
get higher performance is additional tuning of Elastic Net
regression in order to derive optimal α values for each test
case as well. In the paper only α values of 0.8 and 0.2 were
used; however, an algorithm called LARS-EN can be used
to compute Elastic Net regularization paths efficiently [17] to
compute better α values.

Another future goal is to shift focus onto the types of fea-
tures selected from the dCDT and common features selected
between FS algorithms. Now that relatively high performance
results have been attained, investigation into the most common
features that have been selected, whether the selected features
are structural or time based in nature, and the development of
neuropsychiatric explanations for the selected features.
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V. APPENDIX

A. Final Results

TABLE I
INFORMATION THEORETIC FINAL RESULTS

Test Case FS Criterion Network Size Features Selected Performance 95% CI

SCI vs MCI-1 CMIM 2 L, 20,10 N 25 84.33% ±7.03%

SCI vs MCI-2 CMIM 1 L, 50 N 25 85.42% ±9.11%

SCI vs AD CMIM 2 L, 20,10 N 125 91.42% ±6.02%

MCI-1 vs MCI-2 MRMR 2 L, 10,10 N 75 84.11% ±5.90%

MCI-1 vs AD MRMR 2 L, 20,10 N 100 91.49% ±5.99%

MCI-2 vs AD JMI 2 L, 10,10 N 125 84.05% ±6.14%

SCI vs MCI-1 vs MCI-2 JMI 1 L, 50 N 125 71.64% ±6.46%

MCI-1 vs MCI-2 vs AD MI 1 L, 50 N 50 75.97% ±6.19%

SCI vs MCI1 vs MCI2 vs AD MI 1 L, 50 N 100 64.05% ±4.92%

TABLE II
ELASTIC NET FINAL RESULTS

Test Cases Network Size Number of Features Performance Confidence Interval alpha

Healthy vs MCI-1 2L, 10,10 N 19 92.29% 10.24% 0.2

Healthy vs MCI-2 2L, 10,10 N 23 96.03% 8.84% 0.2

Healthy vs AD 2L, 10,10 N 15 92.31% 5.36% 0.2

MCI-1 vs MCI-2 1L, 50N 20 93.75% 8.10% 0.2

MCI-1 vs AD 2L, 20,10 N 28 97.64% 3.57% 0.2

MCI-2 vs AD 2L, 10,10 N 15 84.05% 7.01% 0.2

Healthy vs MCI-1 vs MCI-2 2L, 20,10 N 26 71.39% 6.43% 0.2

MCI-1 vs MCI-2 vs AD 2L, 20,10 N 37 74.41% 6.85% 0.2

Healthy vs MCI-1 vs MCI-2 vs AD 2L, 10,10 N 67 62.87% 7.11% 0.2

TABLE III
WRAPPER FINAL RESULTS

Test Cases Network Size Number of Features Performance Confidence Interval

Healthy vs MCI-1 2L, 10,10 N 3 84.67% 10.15%

Healthy vs MCI-2 2L, 10,10 N 8 91.27% 5.80%

Healthy vs AD 2L, 10,10 N 58 92.44% 5.30%

MCI-1 vs MCI-2 1L, 50N 12 94.64% 4.97%

MCI-1 vs AD 1L, 50N 2 76.90% 8.80%

MCI-2 vs AD 2L, 20,10 N 280 81.32% 5.13%

Healthy vs MCI-1 vs MCI-2 1L, 50N 14 76.12% 10.72%

MCI-1 vs MCI-2 vs AD 1L, 50N 49 78.27% 7.19%

Healthy vs MCI-1 vs MCI-2 vs AD 1L, 50N 84 68.73% 6.31%

B. Gathered Data

TABLE IV
LAMBDA VALUES FOR EACH ELASTIC NET TEST CASE

Test Cases alpha = 0.8 alpha = 0.2
Healthy vs MCI-1 0.1271 0.5085
Healthy vs MCI-2 0.0825 0.274

Healthy vs AD 0.1112 0.4446
MCI-1 vs MCI-2 0.122 0.3879

MCI-1 vs AD 0.0804 0.2929
MCI-2 vs AD 0.077 0.1008

Healthy vs MCI-1 vs MCI-2 0.1094 0.4802
MCI-1 vs MCI-2 vs AD 0.1217 0.4436

Healthy vs MCI-1 vs MCI-2 vs AD 0.146 0.4417



TABLE V
INFO THEORY: SCI VS MCI1

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 80.33% (+/- 10.35%) 74.95% (+/- 10.67%) 76.33% (+/- 9.60%) 82.67% (+/- 16.64%)
CI + Range 80.33% (+/- 7.80%) 74.95% (+/- 8.05%) 76.33% (+/- 7.24%) 82.67% (+/- 12.55%)

Number of Features 75 75 125 100

2 Layer, 10,10 Nodes
ACC+STD 77.48% (+/- 8.26%) 78.67% (+/- 12.70%) 79.86% (+/- 16.37%) 84.33% (+/- 9.32%)
CI + Range 77.48% (+/- 6.23%) 78.67% (+/- 9.58%) 79.86% (+/- 12.34%) 84.33% (+/- 7.03%)

Number of Features 150 125 75 25

2 Layer, 20,10 Nodes
ACC+STD 78.90% (+/- 10.49%) 74.38% (+/- 13.59%) 80.57% (+/- 15.16%) 82.00% (+/- 13.46%)
CI + Range 78.90% (+/- 7.91%) 74.38% (+/- 10.24%) 80.57% (+/- 11.43%) 82.00% (+/- 10.15%)

Number of Features 50 50 125 61

TABLE VI
INFO THEORY: SCI VS MCI2

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 73.91% (+/- 11.48%) 81.23% (+/- 13.92%) 76.29% (+/- 12.55%) 85.42% (+/- 12.09%)
CI + Range 73.91% (+/- 8.66%) 81.23% (+/- 10.50%) 76.29% (+/- 9.46%) 85.42% (+/- 9.11%)

Number of Features 50 75 100 25

2 Layer, 10 Nodes
ACC+STD 69.46% (+/- 9.69%) 75.44% (+/- 12.98%) 80.73% (+/- 8.32%) 80.12% (+/- 13.10%)
CI + Range 69.46% (+/- 7.30%) 75.44% (+/- 9.78%) 80.73% (+/- 6.28%) 80.12% (+/- 9.88%)

Number of Features 50 125 75 25

2 Layer, 20,10 Nodes
ACC+STD 70.40% (+/- 8.44%) 77.40% (+/- 11.32%) 78.65% (+/- 6.51%) 83.19% (+/- 12.61%)
CI + Range 70.40% (+/- 6.37%) 77.40% (+/- 8.53%) 78.65% (+/- 4.91%) 83.19% (+/- 9.51%)

Number of Features 50 100 100 12

TABLE VII
INFO THEORY: SCI VS AD

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 88.31% (+/- 5.74%) 90.31% (+/- 10.02%) 89.67% (+/- 8.06%) 90.56% (+/- 7.41%)
CI + Range 88.31% (+/- 4.33%) 90.31% (+/- 7.56%) 89.67% (+/- 6.08%) 90.56% (+/- 5.59%)

Number of Features 175 125 125 200

2 Layer, 10 Nodes
ACC+STD 89.44% (+/- 6.71%) 85.78% (+/- 12.74%) 90.42% (+/- 9.53%) 89.33% (+/- 7.05%)
CI + Range 89.44% (+/- 5.06%) 85.78% (+/- 9.61%) 90.42% (+/- 7.19%) 89.33% (+/- 5.31%)

Number of Features 200 100 50 150

2 Layer, 20, 10 Nodes
ACC+STD 90.44% (+/- 8.93%) 88.44% (+/- 11.06%) 88.19% (+/- 9.87%) 91.42% (+/- 7.98%)
CI + Range 90.44% (+/- 6.74%) 88.44% (+/- 8.34%) 88.19% (+/- 7.44%) 91.42% (+/- 6.02%)

Number of Features 150 125 50 125

TABLE VIII
INFO THEORY: MCI1 VS MCI2

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 84.88% (+/- 10.79%) 84.05% (+/- 13.06%) 84.23% (+/- 11.43%) 88.15% (+/- 15.36%)
CI + Range 84.88% (+/- 8.14%) 84.05% (+/- 9.85%) 84.23% (+/- 8.62%) 88.15% (+/- 11.58%)

Number of Features 100 50 75 50

2 Layer, 10 Nodes
ACC+STD 81.19% (+/- 8.69%) 84.11% (+/- 7.83%) 81.79% (+/- 9.63%) 89.17% (+/- 12.53%)
CI + Range 81.19% (+/- 6.55%) 84.11% (+/- 5.90%) 81.79% (+/- 7.26%) 89.17% (+/- 9.45%)

Number of Features 100 75 100 150

2 Layer, 20 Node, 10 Node
ACC+STD 80.71% (+/- 14.59%) 79.29% (+/- 14.87%) 84.52% (+/- 13.43%) 87.56% (+/- 11.09%)
CI + Range 80.71% (+/- 11.00%) 79.29% (+/- 11.21%) 84.52% (+/- 10.12%) 87.56% (+/- 8.36%)

Number of Features 50 50 50 200

TABLE IX
INFO THEORY: MCI1 VS AD

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 89.31% (+/- 11.75%) 90.69% (+/- 10.99%) 90.69% (+/- 10.13%) 91.49% (+/- 7.94%)
CI + Range 89.31% (+/- 8.86%) 90.69% (+/- 8.29%) 90.69% (+/- 7.64%) 91.49% (+/- 5.99%)

Number of Features 200 125 100 125

2 Layer, 10 Nodes
ACC+STD 85.97% (+/- 11.36%) 85.65% (+/- 11.88%) 88.61% (+/- 12.45%) 88.29% (+/- 9.99%)
CI + Range 85.97% (+/- 8.57%) 85.65% (+/- 8.96%) 88.61% (+/- 9.39%) 88.29% (+/- 7.53%)

Number of Features 75 125 75 75

2 Layer, 20, 10 Nodes
ACC+STD 85.93% (+/- 8.57%) 91.49% (+/- 7.94%) 89.86% (+/- 7.81%) 91.90% (+/- 8.85%)
CI + Range 85.93% (+/- 6.46%) 91.49% (+/- 5.99%) 89.86% (+/- 5.89%) 91.90% (+/- 6.67%)

Number of Features 25 100 50 200



TABLE X
INFO THEORY: MCI2 VS AD

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 79.39% (+/- 8.05%) 82.43% (+/- 11.38%) 81.12% (+/- 8.89%) 84.62% (+/- 10.03%)
CI + Range 79.39% (+/- 6.07%) 82.43% (+/- 8.58%) 81.12% (+/- 6.71%) 84.62% (+/- 7.56%)

Number of Features 75 100 100 25

2 Layer, 10 Nodes
ACC+STD 78.62% (+/- 6.85%) 82.14% (+/- 6.33%) 81.41% (+/- 8.80%) 83.91% (+/- 12.85%)
CI + Range 78.62% (+/- 5.16%) 82.14% (+/- 4.77%) 81.41% (+/- 6.64%) 83.91% (+/- 9.69%)

Number of Features 25 100 125 25

2 Layer, 20, 10 Nodes
ACC+STD 80.39% (+/- 9.75%) 85.07% (+/- 10.30%) 84.05% (+/- 8.14%) 82.34% (+/- 8.25%)
CI + Range 80.39% (+/- 7.35%) 85.07% (+/- 7.76%) 84.05% (+/- 6.14%) 82.34% (+/- 6.22%)

Number of Features 150 100 125 12

TABLE XI
INFO THEORY: SCI VS MCI1 VS MCI2

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 67.66% (+/- 8.59%) 69.75% (+/- 10.30%) 71.64% (+/- 8.56%) 66.50% (+/- 13.17%)
CI + Range 67.66% (+/- 6.48%) 69.75% (+/- 7.77%) 71.64% (+/- 6.46%) 66.50% (+/- 9.93%)

Number of Features 75 75 125 50

2 Layer, 10 Nodes
ACC+STD 68.03% (+/- 9.77%) 64.37% (+/- 12.45%) 62.43% (+/- 10.07%) 69.05% (+/- 15.43%)
CI + Range 68.03% (+/- 7.36%) 64.37% (+/- 9.39%) 62.43% (+/- 7.59%) 69.05% (+/- 11.64%)

Number of Features 75 75 100 50

2 Layer, 20, 10 Nodes
ACC+STD 65.71% (+/- 10.79%) 66.15% (+/- 11.87%) 67.76% (+/- 14.48%) 67.56% (+/- 12.16%)
CI + Range 65.71% (+/- 8.13%) 66.15% (+/- 8.95%) 67.76% (+/- 10.92%) 67.56% (+/- 9.17%)

Number of Features 75 50 75 100

TABLE XII
INFO THEORY: MCI1 VS MCI2 VS AD

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 75.97% (+/- 8.21%) 73.00% (+/- 12.51%) 73.83% (+/- 8.78%) 72.06% (+/- 9.14%)
CI + Range 75.97% (+/- 6.19%) 73.00% (+/- 9.43%) 73.83% (+/- 6.62%) 72.06% (+/- 6.89%)

Number of Features 50 125 125 275

2 Layer, 10 Nodes
ACC+STD 74.14% (+/- 8.40%) 72.06% (+/- 11.29%) 69.06% (+/- 9.62%) 73.32% (+/- 8.77%)
CI + Range 74.14% (+/- 6.33%) 72.06% (+/- 8.51%) 69.06% (+/- 7.26%) 73.32% (+/- 6.62%)

Number of Features 100 100 100 225

2 Layer, 20, 10 Nodes
ACC+STD 71.69% (+/- 8.93%) 71.51% (+/- 13.31%) 67.16% (+/- 6.62%) 72.35% (+/- 13.00%)
CI + Range 71.69% (+/- 6.74%) 71.51% (+/- 10.04%) 67.16% (+/- 4.99%) 72.35% (+/- 9.81%)

Number of Features 100 125 75 100

TABLE XIII
INFO THEORY: SCI VS MCI1 VS MCI2 VS AD

Network Parameters DATA MI MRMR JMI CMIM

1 Layer, 50 Nodes
ACC+STD 64.05% (+/- 6.52%) 64.71% (+/- 7.70%) 64.25% (+/- 13.44%) 65.69% (+/- 10.14%)
CI + Range 64.05% (+/- 4.92%) 64.71% (+/- 5.81%) 64.25% (+/- 10.14%) 65.69% (+/- 7.64%)

Number of Features 100 75 75 225

2 Layer, 10 Nodes
ACC+STD 65.08% (+/- 10.32%) 63.32% (+/- 11.58%) 62.38% (+/- 8.26%) 66.33% (+/- 9.96%)
CI + Range 65.08% (+/- 7.78%) 63.32% (+/- 8.73%) 62.38% (+/- 6.23%) 66.33% (+/- 7.51%)

Number of Features 150 125 75 200

2 Layer, 20, 10 Nodes
ACC+STD 64.27% (+/- 10.36%) 63.98% (+/- 12.05%) 61.84% (+/- 12.66%) 64.26% (+/- 12.57%)
CI + Range 64.27% (+/- 7.81%) 63.98% (+/- 9.09%) 61.84% (+/- 9.55%) 64.26% (+/- 9.48%)

Number of Features 125 100 50 200

TABLE XIV
WRAPPER+ELASTIC NET: SCI VS MCI1

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 79.76% (+/- 7.84%) 79.76% (+/- 5.91%) 90.95% (+/- 12.32%) 90.95% (+/- 9.29%) 88.29% (+/- 13.61%) 88.29% (+/- 10.26%)
Number of Features 3 17 19
2 Layer 10,10 Nodes 84.67% (+/- 13.46%) 84.67% (+/- 10.15%) 86.95% (+/- 13.51%) 86.95% (+/- 10.19%) 92.29% (+/- 13.59%) 92.29% (+/- 10.24%)
Number of Features 3 17 19
2 Layer 20,10 Nodes 74.90% (+/- 20.17%) 74.90% (+/- 15.21%) 88.33% (+/- 15.45%) 88.33% (+/- 11.65%) 86.62% (+/- 11.42%) 86.62% (+/- 8.61%)
Number of Features 3 17 19



TABLE XV
WRAPPER+ELASTIC NET: SCI VS MCI2

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 90.67% (+/- 12.29%) 90.67% (+/- 9.27%) 90.85% (+/- 10.43%) 90.85% (+/- 7.87%) 91.61% (+/- 13.03%) 91.61% (+/- 9.82%)
Number of Features 8 23 23
2 Layer 10,10 Nodes 91.27% (+/- 7.69%) 91.27% (+/- 5.80%) 93.67% (+/- 6.41%) 93.67% (+/- 4.83%) 96.03% (+/- 8.84%) 96.03% (+/- 6.67%)
Number of Features 8 23 23
2 Layer 20,10 Nodes 87.66% (+/- 7.16%) 87.66% (+/- 5.40%) 92.06% (+/- 10.43%) 92.06% (+/- 7.87%) 91.90% (+/- 11.30%) 91.90% (+/- 8.52%)
Number of Features 8 23 23

TABLE XVI
WRAPPER+ELASTIC NET: SCI VS AD

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 89.08% (+/- 8.36%) 89.08% (+/- 6.30%) 93.89% (+/- 6.71%) 93.89% (+/- 5.06%) 86.44% (+/- 9.09%) 86.44% (+/- 6.86%)
Number of Features 58 13 15
2 Layer 10,10 Nodes 92.44% (+/- 7.02%) 92.44% (+/- 5.30%) 90.44% (+/- 10.22%) 90.44% (+/- 7.71%) 92.31% (+/- 7.11%) 92.31% (+/- 5.36%)
Number of Features 58 13 15
2 Layer 20,10 Nodes 91.56% (+/- 8.84%) 91.56% (+/- 6.66%) 88.56% (+/- 11.94%) 88.56% (+/- 11.94%) 91.64% (+/- 8.84%) 91.64% (+/- 6.66%)
Number of Features 58 13 15

TABLE XVII
WRAPPER+ELASTIC NET: MCI1 VS MCI2

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 94.64% (+/- 6.59%) 94.64% (+/- 4.97%) 84.17% (+/- 17.66%) 84.17% (+/- 13.32%) 93.75% (+/- 10.74%) 93.75% (+/- 8.10%)
Number of Features 12 18 20
2 Layer 10,10 Nodes 91.73% (+/- 8.85%) 91.73% (+/- 6.67%) 93.75% (+/- 11.52%) 93.75% (+/- 8.69%) 91.31% (+/- 7.22%) 91.31% (+/- 5.44%)
Number of Features 12 18 20
2 Layer 20,10 Nodes 91.31% (+/- 9.64%) 91.31% (+/- 7.27%) 88.39% (+/- 11.10%) 88.39% (+/- 8.37%) 91.13% (+/- 9.72%) 91.13% (+/- 7.33%)
Number of Features 12 18 20

TABLE XVIII
WRAPPER+ELASTIC NET: MCI1 VS AD

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 76.90% (+/- 11.68%) 76.90% (+/- 8.80%) 88.99% (+/- 10.07%) 88.99% (+/- 7.60%) 92.60% (+/- 9.65%) 92.60% (+/- 7.28%)
Number of Features 2 16 28
2 Layer 10,10 Nodes 74.54% (+/- 15.19%) 74.54% (+/- 11.45%) 88.33% (+/- 9.01%) 88.33% (+/- 6.79%) 91.90% (+/- 10.15%) 91.90% (+/- 7.65%)
Number of Features 2 16 28
2 Layer 20,10 Nodes 68.77% (+/- 14.47%) 68.77% (+/- 10.91%) 91.81% (+/- 11.59%) 91.81% (+/- 8.74%) 97.64% (+/- 4.73%) 97.64% (+/- 3.57%)
Number of Features 2 16 28

TABLE XIX
WRAPPER+ELASTIC NET: MCI2 VS AD

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 79.23% (+/- 10.61%) 79.23% (+/- 8.00%) 96.00% (+/- 6.63%) 96.00% (+/- 5.00%) 83.14% (+/- 8.05%) 83.14% (+/- 6.07%)
Number of Features 280 56 15
2 Layer 10,10 Nodes 78.03% (+/- 9.38%) 78.03% (+/- 7.07%) 97.27% (+/- 5.82%) 97.27% (+/- 4.39%) 84.05% (+/- 9.29%) 84.05% (+/- 7.01%)
Number of Features 280 56 15
2 Layer 20,10 Nodes 81.32% (+/- 6.80%) 81.32% (+/- 5.13%) 96.07% (+/- 4.84%) 96.07% (+/- 3.65%) 82.82% (+/- 11.29%) 82.82% (+/- 8.51%)
Number of Features 280 56 15



TABLE XX
WRAPPER+ELASTIC NET: SCI VS MCI1 VS MCI2

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 76.12% (+/- 14.22%) 76.12% (+/- 10.72%) 64.60% (+/- 18.84%) 64.60% (+/- 14.20%) 71.65% (+/- 16.75%) 71.65% (+/- 12.63%)
Number of Features 14 18 26
2 Layer 10,10 Nodes 70.99% (+/- 12.61%) 70.99% (+/- 9.51%) 63.01% (+/- 13.11%) 63.01% (+/- 9.88%) 64.46% (+/- 12.05%) 64.46% (+/- 9.09%)
Number of Features 14 18 26
2 Layer 20,10 Nodes 75.03% (+/- 19.85%) 75.03% (+/- 14.96%) 60.43% (+/- 8.64%) 60.43% (+/- 6.52%) 71.39% (+/- 8.53%) 71.39% (+/- 6.43%)
Number of Features 14 18 26

TABLE XXI
WRAPPER+ELASTIC NET: MCI1 VS MCI2 VS AD

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 78.27% (+/- 9.53%) 78.27% (+/- 7.19%) 65.63% (+/- 15.57%) 65.63% (+/- 11.74%) 71.46% (+/- 11.16%) 71.46% (+/- 8.42%)
Number of Features 49 26 37
2 Layer 10,10 Nodes 75.26% (+/- 12.32%) 75.26% (+/- 9.29%) 73.64% (+/- 9.37%) 73.64% (+/- 7.06%) 66.72% (+/- 16.82%) 66.72% (+/- 12.68%)
Number of Features 49 26 37
2 Layer 20,10 Nodes 78.11% (+/- 13.94%) 78.11% (+/- 10.51%) 69.45% (+/- 12.76%) 69.45% (+/- 9.62%) 74.41% (+/- 9.08%) 74.41% (+/- 6.85%)
Number of Features 49 26 37

TABLE XXII
WRAPPER+ELASTIC NET: SCI VS MCI1 VS MCI2 VS AD

Network Parameters Wrapper Elastic Net (a = 0.8) Elastic Net (a = 0.2)
Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI Accuracy + STD Accuracy + CI

1 Layer 50 Nodes 68.73% (+/- 8.37%) 68.73% (+/- 6.31%) 51.27% (+/- 8.05%) 51.27% (+/- 6.07%) 65.39% (+/- 11.40%) 65.39% (+/- 8.60%)
Number of Features 84 25 67
2 Layer 10,10 Nodes 66.51% (+/- 10.82%) 66.51% (+/- 8.16%) 55.95% (+/- 14.34%) 55.95% (+/- 10.81%) 62.87% (+/- 9.43%) 62.87% (+/- 7.11%)
Number of Features 84 25 67
2 Layer 20,10 Nodes 62.31% (+/- 11.54%) 62.31% (+/- 8.70%) 53.18% (+/- 14.90%) 53.18% (+/- 11.23%) 69.22% (+/- 16.18%) 69.22% (+/- 12.20%)
Number of Features 84 25 67
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