
1

Building Recognition Using
Convolutional Neural Networks

Sean McGuire
Machine Learning 1
December 26 2017

Abstract—This paper will discuss Convolutional Neural Net-
works and their application in image recognition. The perfor-
mance of this techniques was then analyzed to the application
of building recognition. The network constructed was able to
achieve an accuracy of 89.6% on images never before seen by
the network.

I. INTRODUCTION

THIS paper demonstrates the functionality, and implemen-
tation of convolutional neural networks (CNN). The CNN

is constructed using keras, a wrapper for TensorFlow. Images
of seven buildings around the Rowan University campus were
used to train and test the network. These images came from
angles covering all sides of the buildings. The buildings used
for this project are: Rowan Hall, Bunce Hall, Business Hall,
Science Hall, James Hall, Chestnut, and Robinson Hall.

II. BACKGROUND

Neural Networks consist of a series of nodes connected to
each other. Each connection holds a weight and these weights
are trained to the optimal values which will allow the network
to take input data and process it through the network, the
final output of the network will result in a classification.
Convolutional Neural Networks (CNNs) are a type of deep
neural network. Deep neural network means that the layers of
nodes are stacked on top of each other resulting in a ”Deep”
network with hidden layers. [1]

A. Applications

Different applications for convolutional neural networks
include, Image recognition, natural language processing, and
recommender systems. Convolutional neural networks are cur-
rently one of the best methods for image recognition. [2]

B. Layers

Convolutional Neural Networks are deep neural networks so
they are constructed by stacking different layers. The layers
used in a CNN are convolutional, activation, pooling, and fully
connected.

1) Convolutional: The convolutional layer is constructed of
many nodes which are then connected to a set of nodes in the
next layer. This can be seen in figure 1.

Fig. 1. Example of Convolutional Layer

This figure shows how each set of 4x4 pixels is connected
to one node in the next layer. The depth of the next layer is
determined by the number of filters, for 5 filters each block
of 4x4 would be connected to 5 output nodes. The parameters
that each convolutional layer requires is the width, and height
of the filter, and the number of filters. Another parameter that
was not utilized in this network is the padding. The padding
applies zeros around the edge of the layer. The size of the
output layer can be determined by using equation 1.

Output =
InputSize− FilterSize+ 2 ∗ ZeroPadding

Stride
+1

(1)

2) Activation: Activation functions are used to manipulate
the data coming from the previous layer. The output size of the
activation layer is equivalent to the input layer size. Two types
of activation functions were utilized in this network, Rectified
Linear Unit (ReLU) and softmax. ReLU is demonstrated by
figure 2. [4]



2

Fig. 2. Max Pooling Example

The ReLU activation function is applied after every convo-
lution layer in the network. ReLU takes the output of the layer
and sets any negative values to zero. This activation function
can be computed very quickly when compared to the other
activation functions such as the softmax activation function.
The softmax activation function is utilized in the last fully
connected layer. This activation function shows the distribution
of all classes. The highest value is selected as it is the most
probable class for the image. The softmax function can be
computed using equation 2.

σ(z)j =
ezj∑k=1
K ezk

(2)

3) Pooling: Max pooling was utilized in this network. Max
pooling takes in the parameters of the length and width of the
pooling square, the max value in this square is then put into
the next layer. Pooling was needed in the network constructed
as it reduces the dimensionality of the data meaning that there
are less weights which need to be calculated, this results in a
decrease in runtime and memory needed for the network. 2x2
max pooling can be seen in figure 3. [3]

Fig. 3. Max Pooling Example

4) Fully Connected: In the fully connected layer each node
is connected to all nodes in the next layer. This type of
layer requires many more connections per node than convo-
lutional layers. This is why the fully connected layers are not
implemented until the end of the network where the layer
dimensions are much smaller. It is important to note that the
2-D layer of nodes must be converted to a vector of nodes
before a fully connected layer can be used. An illustration of
this layer can be seen in figure 4. [4]

Fig. 4. Fully Connected Layer

III. PROJECT DESIGN

The goal of this project was to take pictures of different
buildings around the Rowan University campus and have a
CNN classify the images.

A. Constraints

Some constraints were set on this project such as runtime,
and processing power. When constructing the network it was
found that the size of the network was constrained. After the
first couple iterations of design it was found that if the network
was made bigger than the final iteration of the design it would
be too big to fit on the graphics card which was used to train
the network. This is because the number of weights which
would have to be trained exceeded the total memory on the
Graphical Processing Unit (GPU). The network took 6.5 hours
to train on average. This factor limited the number of iterations
of the network design. During the testing process around 15
different sets of parameters were utilized which amounts to 4
days of run time.

B. Standards

This project has followed a few standards. One standardized
process was taking pictures. All pictures used in this exper-
iment were 2988x5312 RGB resolution taken in landscape.
Keras, a python library, was used to interface with TensorFlow.
This library made it easier and faster to rapidly build the
convolutional neural networks than using TensorFlow directly.
Another standard utilized is the training/test data split of
70/30%. In this case 193 training images and 84 testing images
were used.

C. Network Architecture

The network is constructed of convolutional, max pooling,
Activation, and Fully Connected layers. The CNN architecture
can be seen in figure 5.



3

Fig. 5. Image of CNN Architecture

IV. RESULTS

When running this neural network through the test data it
was found to have an accuracy of 99.4%. When the testing
data is passed through the network it was found to have an
accuracy of 89.2%.

A. Misclassification

In the training set there was only one misclassified image.
This image was investigated. The image in question can be
seen in figure 6, it is clearly an image of the business building
from a farther distance.

Fig. 6. Misclassified Image of Business Building

The network classified this image as Robinson Hall. After
looking at the training set it makes sense how this image
was misclassified. There was only one image of the business
building from a farther distance like the one in figure 6. It is
also important to note that there were 3 images taken from
farther distances of Robinson hall such as figure 7 that were
used to train the network.

Fig. 7. Image of Robinson Hall

The features in both pictures show the grass and sky with
the building at a farther distance from the camera, and even
the colors appear to be similar. This is most likely how the
image of the business building was classified as Robinson Hall
by the network.

B. Output of First Convolutional Layer

It is interesting to visualize the data moving through the
network. To do this the image seen in figure 8 is passed
through the trained network.

Fig. 8. Original Image Passed through Network for Visualization

Some of the outputs of the first convolutional layer can be
seen in figures 9, 10, 11. These images show the output of 3
of the 32 filters which exist in the first convolutional layer. It
can be seen from the images that each one detects different
features of the image, for example figure 9 detects many color
differences between different areas of the images. Figure 10
contains information about the edges of all of the areas of the
image. Figure 11 shows the distinction between the sky and
the rest of the building.

Fig. 9. First filter output of First Convolutional Layer



4

Fig. 10. Second filter output of First Convolutional Layer

Fig. 11. Third filter output of First Convolutional Layer

C. Performance

The two charts on the left side of figure 12 show how the
accuracy and loss of the training data increase and decrease
as the number of epochs increase. The next two charts in the
figure show the changing accuracy and loss over time for the
test data (Not seen before by network).

Fig. 12. Tensor Board graphs of training

Figure 12 shows that the accuracy and loss improve very
rapidly at the beginning, but then as time elapses they start
to level off. It took a GTX 1060 with 3 GB of memory 6.5
hours to train this network. The best model was trained for
198 epochs with the stop condition set on loss, this means
that it will not stop training until 15 epochs pass without the
loss decreasing. Some different models has been saved as a
.json file and are available at the GitHub Repository in the
appendix.

V. CONCLUSION

From this project it was found that CNNs performed very
well when used for image classification. The network designed
was able to achieve training accuracy of 99.4% and test accu-
racy of 89.2%. Some downside were also realized throughout
this project. One unfortunate limitation is that the resolution
is bounded to that of the camera used for the project. This
means that the network will not work for pictures taken on
a camera from a different phone. Another disadvantage is the
training time and memory usage.
If time and computational resources are not an issue, convo-
lutional neural networks can achieve very high accuracy and
are extremely effective when used for image classification.

APPENDIX A
GITHUB PROJECT

Trained Models and python code can be found at
https://github.com/mcguires5/MachineLearning1 in the Build-
ing Classifier CNN folder. The dataset used is very large,
please contact mcguires5@students.rowan.edu if you wish to
access the images used for training and testing.

REFERENCES

[1] L. Hardesty, “Explained: Neural networks,” MIT News.
[2] S. Hijazi, R. Kumar, C. Rowen, and I. P. Group, “Using Convolutional

Neural Networks for Image Recognition,” Semantic Scholar.
[3] Veličković, P. (2017). Deep learning for complete beginners:

convolutional neural networks with keras. Cambridgespark.com.
Available at: https://cambridgespark.com/content/tutorials/convolutional-
neural-networks-with-keras/index.html.

[4] Data Science and Robots Blog. (2017). How do Con-
volutional Neural Networks work?. [online] Available at:
http://brohrer.github.io/how convolutional neural networks work.html
[Accessed 26 Dec. 2017].


	Introduction
	Background
	Applications
	Layers
	Convolutional
	Activation
	Pooling
	Fully Connected


	Project Design
	Constraints
	Standards
	Network Architecture

	Results
	Misclassification
	Output of First Convolutional Layer
	Performance

	Conclusion
	Appendix A: GitHub Project
	References

